Parallel Implementation of an Explicit Formulation of the Multiplicative Schwarz Preconditionner
نویسندگان
چکیده
We present an explicit formulation of the splitting associated with the Mutiplicative Schwartz iteration. We give an implementation of the new formulation on a parallel computer and show its advantages when used as a preconditionner for a Krylov method. In the paper the implementation is described in PETCs standard. Keywords— Domain decomposition, Multiplicative Schwarz preconditionner, iterative methods, PETSc library, parallel computing.
منابع مشابه
A Parallel Implementation of a Two-Level Overlapping Schwarz Method with Energy-Minimizing Coarse Space Based on Trilinos
We describe a new implementation of a two-level overlapping Schwarz preconditioner with energy-minimizing coarse space (GDSW) and show numerical results for an additive and a hybrid additive-multiplicative version. Our parallel implementation makes use of the Trilinos software library and provides a framework for parallel two-level Schwarz methods. We show parallel scalability for two and three...
متن کاملDevelopment and Application of an ALE Large Deformation Formulation
This paper presents a complete derivation and implementation of the Arbitrary Lagrangian Eulerian (ALE) formulation for the simulation of nonlinear static and dynamic problems in solid mechanics. While most of the previous work done on ALE for dynamic applications was mainly based on operator split and explicit calculations, this work derives the quasi-static and dynamic ALE equations in its si...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملAlgebraic Analysis of Schwarz Methods for Singular Systems
During the last few years, an algebraic formulation of Schwarz methods was developed. In this paper this algebraic formulation is used to prove new convergence results for multiplicative Schwarz methods when applied to consistent singular systems of linear equations. Coarse grid corrections are also studied. In particular, these results are applied to the numerical solutions of Markov chains.
متن کاملAn Efficient Implementation of Phase Field Method with Explicit Time Integration
The phase field method integrates the Griffith theory and damage mechanics approach to predict crack initiation, propagation, and branching within one framework. No crack tracking topology is needed, and complex crack shapes can be captures without user intervention. In this paper, a detailed description of how the phase field method is implemented with explicit dynamics into LS-DYNA is provide...
متن کامل